The community Noah land surface model with multiparameterization options (Noah‐MP): 2. Evaluation over global river basins
نویسندگان
چکیده
[1] The augmented Noah land surface model described in the first part of the two‐part series was evaluated here over global river basins. Across various climate zones, global‐scale tests can reveal a model’s weaknesses and strengths that a local‐scale testing cannot. In addition, global‐scale tests are more challenging than local‐ and catchment‐scale tests. Given constant model parameters (e. g., runoff parameters) across global river basins, global‐scale tests are more stringent. We assessed model performance against various satellite and ground‐based observations over global river basins through six experiments that mimic a transition from the original Noah LSM to the fully augmented version. The model shows transitional improvements in modeling runoff, soil moisture, snow, and skin temperature, despite considerable increase in computational time by the fully augmented Noah‐MP version compared to the original Noah LSM. The dynamic vegetation model favorably captures seasonal and spatial variability of leaf area index and green vegetation fraction. We also conducted 36 ensemble experiments with 36 combinations of optional schemes for runoff, leaf dynamics, stomatal resistance, and the b factor. Runoff schemes play a dominant and different role in controlling soil moisture and its relationship with evapotranspiration compared to ecological processes such as the b factor, vegetation dynamics, and stomatal resistance. The 36‐member ensemble mean of runoff performs better than any single member over the world’s 50 largest river basins, suggesting a great potential of land‐based ensemble simulations for climate prediction.
منابع مشابه
The community Noah land surface model with multiparameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements
[1] This first paper of the two‐part series describes the objectives of the community efforts in improving the Noah land surface model (LSM), documents, through mathematical formulations, the augmented conceptual realism in biophysical and hydrological processes, and introduces a framework for multiple options to parameterize selected processes (Noah‐MP). The Noah‐MP’s performance is evaluated ...
متن کاملHydrological evaluation of the Noah-MP land surface model for the Mississippi River Basin
[1] This study evaluates regional-scale hydrological simulations of the newly developed community Noah land surface model (LSM) with multiparameterization options (Noah-MP). The model is configured for the Mississippi River Basin and driven by the North American Land Data Assimilation System Phase 2 atmospheric forcing at 1/8° resolution. The simulations are compared with various observational ...
متن کاملIntegration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions
Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multiparameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Resea...
متن کاملAccounting for Pliem-Xiu and NOAH Module to Simulate Dust: A Case of Western Areas of Ahwaz
Extended abstract 1- INTRODUCTION In the arid and semi-arid areas of Asia, dust storms occur frequently. Much progress has been made in the monitoring modeling and prediction of Asian dust storms. Dust emission is caused by wind erosion in the sensitive areas. Wind erosion is described as the transportation of soil particles by means of the wind. Soil Surface moisture is one of the most i...
متن کاملGlobal terrestrial water storage connectivity revealed using complex climate network analyses
Terrestrial water storage (TWS) exerts a key control in global water, energy, and biogeochemical cycles. Although certain causal relationship exists between precipitation and TWS, the latter quantity also reflects impacts of anthropogenic activities. Thus, quantification of the spatial patterns of TWS will not only help to understand feedbacks between climate dynamics and the hydrologic cycle, ...
متن کامل